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Preface

This report on the numerical properties of the implicit four-point finite
difference equations of unsteady flow is the first in a series of reports
which will describe the use of the complete dynamic equations of unsteady
flow for computing stages and discharges in rivers, reservoirs, and estuaries.
The theory, solution techniques, computer programs, and description of field
applications will be presented in forthcoming reports.
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friction slope defined by Eq (52c¢)

channel bottom slope

time

time of initial rise in the upstream boundary discharge hydrograph
when the discharge is steady and equal to Oo

wave period

tangent trig function

arc tangent trig function

solution of differential equation L(u)

solution of difference approximating equation L(U)
perturbation velocity

exact solution of perturbation velocity

velocity of flow in cross-section

mean velocity

velocity of lateral inflow in the x-direction
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from the upstream boundary

stage computed with a particular At time sten

maximum {(peak) value of v,

stage computed with a At “(exolicit time step)

maximum value of vs

initial depth of flow at time t

dummy variable caqual to (A-1)

wave parameter equal to 2n/T

skewness parameter of upstream boundary hydroararh defined by
Ea (53a) '

perturbation error in the depth

perturbation error in the velocity

computational distance step

computational time step

computational time step required in explicit metheods as determined
by the Courant condition, Eq (2)

correction factor by which U” is obhtained frorm a given ¥

finite difference weightina factor for spatial derivatives
stabilitv factor defined by Ea (12) and Ea (17a)

constant (3,1416...)

amplification factor of upstrecam boundary hvdroaraph defined hy
Fa (53b)

wvave parameter eaqual to 2w/L

tine from beainnina of rise to neak of upstream boundary discharce
hydroaraph

time from heocinnina of rise to center of aravity of upstream
boundary discharae hydroaraph

durmy variable representing any particular channel parameter
durmy variable representinc any particular channel parameter
whose value is different than V]

partial derivative
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NUMERICAL PROPERTIES OF
IMPLICIT FOUR-FOINT FINITE DIFFERENCE EQUATIONS OF UNSTEADY FLOW

Abstract

Linearized model equations of the quasi-linear differential equations of
unsteady gradually varied flow are utilized to investigate the effect of the
discretization of the continuous partial derivatives with implicit four-
point finite difference quotients. Through use of a weighting factor (6)
which positions the spatial difference quotient between adjacent time levels
in the x-t solution region, the investigation is generalized to include the
various four-point implicit difference schemes that have been reported in
the literature.

Numerical stability properties of the four-point difference schemes are
analyzed via the von Neumann method. When 0.5 < 6 < 1.0, the difference

equations are found to be unconditionally 1inea;iy stable and conditionally
stable when 8 < 0.5.

The convergence properties are qualitatively investigated by determining
the truncation error. The backward implicit scheme (6=1.0) has a first
order truncation error, i.e., E=0(At)+0(Ax"); whereas, the box i licit2
scheme (6=0.5) has a second order truncation error, i.e., E=0(At")+0(Ax").

The convergence properties are quantitatively investigated by determining
analytical expressions for wave damping and wave celerity convergence
ratios, e.g., numerical damping/physical wave damping. These expressions
are nondimensionalized in terms of convenient dimensionless parameters, and
graphs are presented which quantify the convergence ratios for a wide range
of the dimensionless parameters. The box scheme is shown to possess superior
convergence properties compared to the backward implicit scheme, particularly
with respect to wave damping. On the basis of convergence properties, the
box scheme is shown to be the preferred implicit four-point difference scheme
for discretizing the differential equations of unsteady flow.

1. INTRODUCTION
1.1 Unsteady Flow Equations

The motion of a long wave in a river or estuary such as a flood wave, tide,
or storm surge is usually considered one-dimensional, i.e., the accelerations
and velocity components of the wave in the transverse and vertical directions
are not considered. Hence, the motion of the wave is described solely in the
direction of the longitudinal axis of the river by the one-dimensional
differential equations of unsteady gradually varied flow. The equations

consist of: (1) the continuity equation which conserves the mass of the
wave, :

oA L d(av) _  _
~a?+—a—;(—— q—O (la)



and (2) the equation of motion or dynamic equilibrium which conserves the
momentum of the wave,

2 2
oV .1 3V OH _ i ]VIV _ q_
3% + > "—'—x + g(ax SO + 5 21,(}/3)“‘ (v qu)A _ 0 (1b)

in which x = the distance along the river axis, positive in the downstream
direction; t = time; A = wetted cross-sectional area; V = mean velocity in a
cross section; H = depth of flow in a cross section; S = channel bottom
slope; q = lateral inflow per unit length along the ri%er axis; V__ = mean
velocity of lateral inflow in the x-direction; R = the hydraulic ggdius;

n = Manning's roughness coefficient; and g = acceleration due to gravity.

Egs. (1) are quasi~linear, first order, first degree partial differential
equations of the hyperbolic type. They have two independent variables, x and
t, and two dependent variables, H and V. The other terms-are either known
functions of x, t, H, and/or V, or they are constants. No analytical solu-
tions to this system of equations are presently known except for cases where
channel geometry is uncomplicated and the nonlinear properties of the equations
are either neglected or made linear. However, Eqs. (1) can be approximated
by finite differences, and the resulting difference equations numerically
integrated via high speed digital computers to obtain solutions of H and V
for discrete values of x and t.

1.2 Methods of Solution

Numerous finite difference techniques have been developed to solve Egs. (1).
These techniques can be classified into three categories:

(1) Finite differences of the transformed forms of Egs. (1), called
characteristic equations, using either a fixed grid, e.g., Lister
[1960], Baltzer and Lai [1968], Yevjevich and Barnes [1970]; or a
characteristic grid, e.g., Lister [1960], Amein [1966], and
Liggett and Woolhiser [1967];

(2) Explicit finite difference schemes, e.g., Stoker [1956, 1957],
Dronkers [1969], and Garrison et al. [1969]; and

(3) Implicit finite difference schemes, e.g., Abbott and Ionescu [1967],
Lai [1967], Baltzer and Lai [1968], Dronkers [1969], Amein and
Fang [1970], Gunaratnam and Perkins [1970], Contractor and Wiggert
[1971], and Fread [1973b].

The characteristic and explicit schemes are relatively simple compared to
the implicit schemes; however, they are restricted in the size of the
computational time step required to achieve a stable computational procedure.
Numerical stability is the condition wherein small numerical errors do not
increase in magnitude with succeeding computations such that the true solu-
tion is masked by the errors. The restriction in At is manifested by the
following inequality, known as the Courant stability criterion [Stoker,

2



1957; Strelkoff, 1970]:

Ax
At < Iml minimum for all m points (2)
m “m Tm

where is the width of the water surface in the mth cross-section, Ax is
the m finite difference distance interval, and At is the computational

time step. Frictional considerations may further limit the maximum allowable
At as manifested by the following stability criterion [Garrison et al., 1969]:

Ax 1 - gnllv_|at
At < [( :afjni ) ( M Vn )] minimum for all m points (3)
- Vm+ g m m 4/3
2,21 Rm

Inspection of the above stability criteria indicates that the computational
time step is substantially reduced as the hydraulic depth (A/B) increases,
Thus, in deep rivers, it is not uncommon for time steps on the order of
minutes or even seconds to be required even though the flood wave may be very
gradual having a duration in the order of weeks. Such small time steps cause the
explicit and characteristic difference schemes to be very inefficient in the
use of computer time.

Another requirement of explicit and characteristic schemes is the use of
equal distance intervals. This restriction is disadvantageous for rivers
with irregular geometry.

In order to negate the restriction of small time steps imposed on ‘the
explicit and characteristic schemes for reasons of stability, implicit
difference schemes were developed. Several of the implicit difference
schemes have been shown to be computationally stable and independent of the
size of the time and distance steps. Abbott and Ionescu [1966], Leendertse
[1966], Dronkers [1969], Gunaratnamand Perkins [1970], and Strelkoff [1971]
Presented analytical stability analyses of various implicit schemes while
others have demonstrated the stability of implicit schemes via numerical
experiments, e.g., Amein and Fang [1970] and Fread [1973a]. Also, analytical
analyses of the accuracy or convergence properties of some implicit schemes

have been presented, viz., Leendertse [1966], and Gunaratnam and Perkins
[1970].

1.3 Implicit Four-Point Difference Schemes

Of the various implicit schemes which have been developed, the
"four-point" schemes appear most advantageous since they can readily be
used with unequal distance intervals. These schemes have been used by
Baltzer and Lai [1968), Amein and Fang [1970], Contractor and Wiggert [1971],
and Fread [1973a]. A description of the implicit four-point difference
schemes follows.

The continuous x-t region in which solutions of H and V are sought may be
represented by a rectangular net of discrete points as shown in Fig. 1.

3



The errors are assumed to be perturbations imposed on the solution of the
linear system. If the exact difference equations are subtracted from the
difference equations which include the errors, equations are formed which are
quite similar to Egs.. émlxbug tg terms of the errors. If these error equations

are then divided by e , the following error expressions are obtained:
icA
ne D (e298%1) - (19%) 4 v*[Hdz;(29X+2-29)(e ) = (11a)

h*[g%5<zex+z-ze)(ei°Ax-1)1 + vt (e198%41) A-14kAE (8A+1-8)] = O (11b)
X
where

A = elBAt (12)

Upon dividing Egs. (11) by (echx+1) and substitution of the complex
identity,
i tan(oAx/2) = (eX9%%-1) (13)

(elan+l)

the following equations are cbtained:

At

(l—l)h*+[(261+2-26)H ——-i tan(0Ax/2)}v* = 0 (14a)
[(26l+2-26)g%§-i tan{oAx/2) 1h* + [A-1+kAt(6A+1-6)]v* = O (14b)

In order for the difference equations, Egqs. (7), to be stable, it is
necessary that the errogA%t time t+At be smaller than the error at time t.
Consequently, |l| = | l, as defined in Eq. (12), must be smaller than or
equal to unity. A relation may be found between A, 0, and the coefficients
of the difference equations containing Ax and At. The von Neumann stability
criterion, which must hold for all possible o, then determines the final
relation between A and the coefficients. Stability in the sense of
von Neumann is based on the conjecture that linear operators with variable
coefficients are stable if and only if all their localized operators, in
which coefficients are taken as constant, are stable. Thus, in the
von Neumann technique, when it is found that |l|<l is independent of the
values of Ax and At, the difference equations are unconditionally linearly
stable; however, if |A|<l for only certain intervals of At/Ax, the equations
are conditionally stable. When |A|=l, the difference equations are neutrally

8
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Egs. (6) are the same as 1nvestlgated by Leendertse [1966] and Dronkers
[1969].

The four-point implicit difference approximations to the model equations
are obtained by substituting the finite difference expressions given by
Egs. (4) into Egs. (6). Thus,

Rt s oty = b - R ntl _ n+l S D
x o +8H (‘ml "m )+ (1-0)H ("m+l - 'm) = 0 (7a)
24t 0 \——— o == —_T
Ax Ax
n+l n+l n n+l n+l
vm * vm+1 m ~ vm+1 + e[(hm+1 hm ) + k( §+1 v::i)
24t g Ax 5 ]
n n n n
h - h v + v
+1
+(1-0) [g (T 4+ (B—Ty). o (7b)

Egs. {7) are investigated for their stability properties by the von Neumann
technique in which a Fourier expansion of a line of errors is followed as time
progresses. The Fourier series can be formulated in terms of sines and
cosines; however, the algebra is easier if the complex exponential form is
used. To further ease the analysis, only one term of the Fourier series need
be considered since Egs. (7) represent a linear system. The errors are
given by the following truncated series:

i(ox+Bt) ) (8a)

Sh(x,t) h*e

v*ei(GX+Bt) (8b)

Sv(x,t)

Where Sh and 6v are the errors in the depth and velocity, respectively; h*
and v* are the exact solutions of the depth and velocity in the difference
equations; i is the complex imaginary unit equal to A/-1; B=2m/T, where T is
the period of the wave or the time it takes for the complete wave:to pass-a
fixed point; and o=2n/L, where L is the wave length which is given by the
product of the wave period and the propagation speed of the wave. Since

(9a)

X m Ax

t = n At (3b) -

the errors can be expressed at discrete points in the x-t solutlon reglon, viz.
i(omAx + BnAt)

6h = nre _ (10a)
Gh:‘:i - h*ei [O (m+l) Ax + B (n+1) At] (lOb)



The net points are seen to be defined by the intersection of straight lines
drawn parallel to the axes of the x-t region. Lines parallel to the x-axis
are time lines and have a spacing of At which need not be constant. Lines
parallel to the t-axis represent discrete locations along the river and have
a spacing of Ax which need not be constant. Each discrete point is identi-
fied by a subscript which designates the x-position and a superscript which
designates the time line. o

. In implicit four-point difference schemes, the time derivatives ar
approximated by a forward difference operator centered between the m  and
m+l points along the x-axis, i.e.,

n+l n+l n n

aK Km* + Km+l B Km B Km+l
L. (4a)
ot 24t

where K represents any variable. The spatial derivatives are approximated
by a forward difference operator positioned between two adjacent time lines
according to weighting factors of 6 and 1-6, i.e., :

n+l n+l n n
K - K K - K
9K gl m _gy (Tl m. (4b)
x e( A ) + (1-6)( " )

Variables or functions other than derivatives are approximated at the time
level where the spatial derivative is evaluated by using weighting factors
similar to those of Eq. (4b). Thus,

&t Kn+i Klr; + K;_'_l
K= (2 mHly 4 (1-6) (P2 - (4¢)

A 6 weighting factor of unity yields the backward implicit scheme used by
Baltzer and Lai [1968] and Dronkers [1969]). A 6 weighting factor of 0.5
yields the "box" scheme used by Amein and Fang [1970], Contractor and
Wiggert [1971], and Fread [1973b]. The four-point difference scheme becomes
implicit for all values of 6 greater than zero.

1.4 Scope of this Report

Although the implicit four-point difference equations have received atten-
tion in the literature, a detailed numerical analysis of the schemes has
been lacking although some numerical experiments were reported by Amein and
Fang [1970] and Fread [1973a)l. It is the purpose of this report to present
a detailed analysis of the numerical properties (stability and convergence)
of the implicit four-point difference schemes when applied to the unsteady
flow equations. Both analytical analyses and numerical simulation techniques
will be utilized to study their stability and convergence properties.



2. STABILITY

2.1 Introduction

It is essential that the discrete steps of time and distance in the inte-
gration of the finite difference equations provide a solution which is bounded.
Such a solution is nuwerically stable, i.e., the numerical errors introduced
in the computations through round-off are not amplified during successive
computations such as to entirely mask the true solution.

2.2 von Neumann Technique

An analytical technique for investigating numerical stability was developed
by von Neumann and presented in detail by O'Brien et al. [1951]. The
von Neumann technique is used herein to investigate the stability properties
of the four-point implicit schemes. Since it is only applicable to linear
differential equations, it is necessary to linearize Eqs. (1). The linearized
equations are then simplified by omitting certain terms on the basis of their
relatively small magnitude in order to facilitate the stability analysis.
Hence, the equations which will be analyzed represent a model of the original
nonlinear differential equations; nonetheless, considerable understanding of
the numerical properties of nonlinear equations can be attained from this
kind of analysis.

The model equations are applicable to a broad channel with no lateral
inflow; hence, R=H and g=o. The linearization of Egs. (1) is accomplished
by substituting a small perturbation in depth h above a mean depth Ho and
velocity v above a mean velocity Vo' i.e.,

H=H+h (5a)
A .

v

vy (5b)
o]

Upon performing the above mentioned substitutions and simplifications, the
following model equations are obtained:

%E-+ Hov =0 (6a)
t o
9x

= +g—+kv=0 (6b)

K= O (6c)



Egs. (6) are the same as investigated by Leendertse [1966] and Dronkers
[1969]. .

The four-point implicit difference approximations to the model equations .
are obtained by substituting the finite difference expressions glven by
Egqs. (4) into Egs. (6). Thus,

n+l n+l n n

hm + hm L hm - hm+l vn+l _ vn+1' o o
+ + 60 H (ml m )+ (1-6)H (m+l ~ m) = 0 (7a)
Ax Ax
vn+1 + Vn+1 S R, (hn+1 n+1) n+l n+1
m+1l m m+1 + 0] m+1 m + k('m m+1)
2At g Ax > ]
n n n n
h - h v +v -
m+1 +1
+ (1-8) [g (= Ty 4 k(————— > )= 0 (7b)

Egs. {7) are investigated for their stability properties by the von Neumann
technique in which a Fourier expansion of a line of errors is followed as time
progresses. The Fourier series can be formulated in terms of sines and
cosines; however, the algebra is easier if the complex exponential form is
used. To further ease the analysis, only one term of the Fourier series need
be considered since Egs. (7) represent a linear system. The errors are
given by the following truncated series:

h*ei (ox+8t) (8a)

Sh(x,t)

i (ox+B8t) (8b)

v*e

Sv(x,t)

Where Sh and 8v are the errors in the depth and velocity, respectively; h*
and v* are the exact solutions of the depth and velocity in the difference
equations; i is the complex imaginary unit equal to A/-1; B=2m/T, where T is
the period of the wave or the time it takes for the complete wave'to pass-a
fixed point; and o=271/L, where L is the wave length which is given by the
product of the wave period and the propagation speed of the wave. Since

x = m Ax (3a)
t =n At - (9Db) -

the errors can be expressed at discrete points in the x-t solutlon reglon, viz.,
dhm h*e i(omAx + BnAt) ' ) (10a)



The errors are assumed to be perturbations imposed on the solution of the
linear system. If the exact difference equations are subtracted from the
difference equations which include the errors, equations are formed which are
quite similar to Eqs.i 7 xbggnig terms of the errors. If these error equations
are then divided by e e , the following error expressions are obtained:

. . . 3 A
neh(el9%%y - (@17%4) 7 + v*[nd%i(zex+z-2e)(el° *1)1 =0  (1la)

h*[g%5(29x+z-ze)(ei°Ax-1)] + vr (e198%41) (A-1+kAt (0A+1-6)] = O (11b)
X
where

A = elBAE (12)

Upon dividing Egs. (11) by (eloAx+1) and substitution of the complex
identity,
i tan(oAx/2) = (e298%.1) (13)

(eLOAx+1)

the following equations are obtained:

(l-l)h*+[(261+2-26)H°%§-i tan(oAx/2)]v* = 0 (14a)
[(261+2-26)g%§ i tan(oAx/2)]h* + [A-1+kAt(6A+1-0)]v* = O (14b)

In order for the difference equations, Egqs. (7), to be stable, it is
necessary that the errggA%t time t+At be smaller than the error at time t.
Consequently, |A]| = |e |, as defined in Eq. (12), must be smaller than or
equal to unity. A relation may be found between A, 0, and the coefficients
of the difference equations containing Ax and At. The von Neumann stability
criterion, which must hold for all possible o, then determines the final
relation between A and the coefficients. Stability in the sense of
von Neumann is based on the conjecture that linear operators with variable
coefficients are stable if and only if all their localized operators, in
which coefficients are taken as constant, are stable. Thus, in the
von Neumann technique, when it is found that |A|<l is independent of the
values of Ax and At, the difference equations are unconditionally linearly
stable; however, if |A|<1 for only certain intervals of At/Ax, the equations
are conditionally stable. When |A|=1, the difference equations are neutrally
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or weakly stable; and when |A|>l, the equations are unconditionally
linearly unstable.

A relationship between A, o, and the coefficients of the error equations
can be obtained by eliminating v* from Egs. (14) and then dividing by h¥*,
Thus, the following expression is obtained:

2
(A-1) [A=14+6 (A-1)b+b] + 4[6(A-1)+1]°a = O (15)
where
Al 2 |
a =g H (7)) tan’ (0ix/2) (16a)
b=k At (16éb)

Eq. (15) may be solved for A by using the substitution, z=A-1l. 1In this way,
the following expression for )\ is obtained:

A = r+is (17a)
where
r=1 (88a+b; (17b)
2(1+46“a+6b)
/ 2
s = ¥il6a ‘g (17¢)
2(1+46 a+6b)

From Egs. (17), an expression for IAI may be obtained. Thus,

. ,
Ry =~/r2+sz =\/i+(22-2) at+(e-1)b (18)

1+46"a+6b

Eq. (18) may be used to determine the stability of various implicit four-
point difference equations by substituting different values of 6 and
examining the resulting expression to see if it is less than, equal to, or
greater than unity,

When 6 is unity,

_ [
RYRN Frowrs (19)



Therefore, |A|<1 and the backward implicit four-point difference scheme
is unconditionally linearly stable.

When 6 is 0.5,

- [lra-b/2 |
Al =y 1+a+b/2 (20)

Therefore, |l|§} and the box or centered four-point difference scheme
is unconditionally linearly stable.

When 0 assumes values in the range 0<8<0.5 in Eq. (18), it is seen that the
condition whereby Illg; is not independent of the values of a and b; there-
fore, since a and b are functions of Ax and At, the four-point implicit
difference equations are conditionally linearly stable for 6 values less than
0.5.

When frictional effects are negligible, k as defined by Eq. (6c) tends to
zero as does b which is given by Eq. (16b). For this condition, the fully
implicit scheme remains unconditionally stable; however, the box scheme
becomes neutrally or weakly stable. Under some conditions, the neutrally
stable box scheme will exhibit a tendency for the numerical solution to
oscillate about the true solution. Since the oscillations are bounded and
are not large relative to the solution, this condition is one of pseudo-
instability which is sometimes referred to as a computational mode. Some
investigators have apparently mistaken this condition for a serious instabil-
ity and have chosen the backward implicit scheme in order to avoid the
computational mode. If the pseudo-instability of the neutrally stable box
scheme proves to be an inconvenience, it has been observed via numerical
experiments that it may be essentially eliminated by using a 9 of approxi-
mately 0.55. This is recommended for reasons of accuracy, as will be shown
later, rather than using the backward implicit scheme.

In the preceding analysis, a simple model system of the original complex
nonlinear system was investigated. The model was locally linearized and
given constant coefficients. The influence of boundary conditions, i.e.,
the amplitude and shape of the wave, was not considered. It is hoped then
that a finite difference scheme which is stable for the model system will
remain stable for the more complex nonlinear system. Computing experience
has shown that the hueristic analysis provided by the von Neumann technique
will usually provide a true description of the stability properties of finite
difference schemes for nonlinear systems; however, it does not insure that a
stable scheme will always be stable. Nevertheless, those schemes are
identified which are fundamentally unstable,

2.3 Numerical Experiments
Stability may be investigated via numerical experiments in which the

difference equations of the nonlinear system are tested with different time
and distance steps for various wave conditions. Although this type of
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analysis can deal directly with the complex nonlinear system,
in that it is difficult and sometimes misleading to extend the results
beyond the range of computational intervals and wave conditions which are
tested. The numerical experiments reported by Fread [1973a] tend to agree
with the results of the stability analysis presented herein; however, it is
noted that in the numerical experiments, the implicit four-point scheme
with 6 values in the range of 0.5 did exhibit instabilities when the time
steps were quite large relative to the wave period, i.e., At>T/4, and when
the wave condition approached that of an abrupt rather than gradual wave.
The four=-point scheme was found to become stable for such severe conditions
if 6 was increased such that the difference scheme approached the backward

implicit scheme, but at the expense of a loss in accuracy. This property of
the four-point schemes is discussed in the next section.

it is limited

11.



3. CONVERGENCE

3.1 Introduction

Convergence is the condition in which the solution of the finite difference
equation for a finite grid size approaches the analytical solution of the partial
differential equation. This means that if u is the solution of the differ-
ential equationn¥£95, and if U is the solution of the difference approximating
equation [L(u)] which is in discrete form, then the conditions under
which the convergence ratio U/u approaches unity are the convergence
conditions.

3.2 Truncation Error

Convergence may be investigated qualitatively by determining the functional
form of the truncation or discretization error. This error is the difference
between the solution of the difference equation and that of the partial '
differential equation. The solution of the difference equation is found by
expanding each term in a Taylor Series expansion about the point at which
the differential equation is computed. In this case, the point is the
center of the grid shown in Fig. 1, i.e., the point (m+1/2, n+l1/2).

+
First, expanding K; and K; 1 about the point (m,n+1/2) gives the following:

(Kn)n+l/2 ) Kn+1/2 ) AE(QE)n+l/2+éEi aZK)n+1/2 At3(33x)n+1/2
) 2 T48 ..
m'm m 279t m 8 ot m 48 3t3 m +, (21a)
n+l/2 n+l/2
m1)™2 na1yn ae ox P2 a2 o ae® 3% *+... (21b)
%n "t 26 B 2 s 3
m m 3t m ot™ m
Therefore,
n+l/2
n+
L n+l1/2 n+1/2
(B - &% ae? o’
___KE__.m = G% _ + ;4( §) +... (22a)
In a similar manner, ot m
+l n+1/2
- +1/2 2 n+l/2
=L,k 2 5 T | (22b)
At it 24—3)
m+l me >
mt+l
Now, expanding Egs. (22) about the center point (m+l/2, n+1/2) gives:
’ ) n+1/2 +1/2
Kn+1-Kn n+1/2 2 3 n+1/2 32 n 1/
( m m) = (_85) +A_t_(__3 K) "é)i[(s'—x_)
m+1/2 mi/2 U g 0 ™Y
n+1/2 n+l/2 n+1/2
2 .4 2 .3 245
+A_§z(a K 3.) +...]+A—’85—[ (é—g—) +L.\-32:—4-(8I2<—3.) +...]=:.. (23a)
9
X0 L 3t 0x 3t | h1/2
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+1 _.n
(K::‘"l-xm“) = @ nﬂ/z*&z"i%’ v Blaao
m+l/2 m+l/2 ot m+l/2 ' /
n+l/2 n+l/2 n+l/2
2 .4 2 3 2 .5
AR e A sae @b
axot m+1/2 ax ot m1/2 ax ot m+1/2
(21, 22, and 23), the following

In a manner similar to that used in Egs.
expansions are obtained:

n+l/2
n+l _n n+l/2 n+l/2
Cm+l I S S T ' )
Ax T 'ax 24" 3 2 '9toax
m+l/2 m+l/2 ox mHl/2 m+l/2
n+1/2 n+l/2 n+1/2
2 .4 2 3 2 .5
A 9 A )
+é§2(a K 9 +'._]+_§_[( o +_§Z4._%§_75) +...0=... (24a)
otoax m+1/2 ot ox m+1/2 3t 9x m+1/2
gL D+l ntl/2 w2 2 3 PHL/2 , n+l/2
(.Etl__EL_q = (Eﬁ% +é§_.§_§) +éE[(2_§_)
Ax +1/2 ox m+l/2 24 3 3 2" "9tax
m X m1/2 m+l/2
, n+1/2 , ; n+l/2 . s n+l/2
A P
HAx_ 3K PO P e S + XK, +...]+... (24b)
24 5 eax> 8 " ae? 24 520>
X me1/2 X m+1/2 X m+1/2

Since in Eqs. (23 and 24) all derivatives are expressed at the center point
(m+1/2, n+1/2), this notation will henceforth not be used. Egs. (4) may
now be expressed in terms of their Taylor Series expansion about the point
(m+1/2, n+1/2) by substituting the expressions given in Egs. (23 and 24) for
the same terms in Eqs. (4). Thus,

ntl n+l _n _n
-a_K_ ~ Km +Km+l Km-xm+l' = _ai( A__tz. 3_31(4-%2_(___331( +A.l:_2. ___._ESK )+ (zsa)
at 2At t’ 24,378 , 2, "8 NENE _

n+l _n+l n n
-K - 2 2 .4
3K mtl m mtl m, _ 9K At 9 K Ax 3K
ax T 0T e U ) T Rt Rt e
otdx
st? 2’ ax? 3%k ax? o3k 25b)

ot s 3t (

ot 9x ot ox 9x

Through use of the general expressions developed above, the following
Taylor series expansion for Eq. (7a) may be obtained:

2 .3 2 .3 2 .5 2
dh At 3°h Ax° 3°h At 3°h v At 3%y
—t—— e ————)+H [+ (20-1)—(——
ot 24 3t3 8 ax2at 24 3x28t3 0 ox 2'3td3x
a adv | ae? 83 ax® 3oy ax? 33y _
M7 S LS sty e s U7 S SRAEEED By (26)
otdx at ox ot ox 9x
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The truncation error (E) can be determined by subtracting Eq. (6a) from
Eq. (26). Thus,

- At 0%y ax® oty at? 1 3%h a3y ax? 35y
E= (215 8 Goxt 27 — 3,555 N U7 S S U
3tdx o at” at‘sx 3t“ox
sz I-Io 33v 33h At2 Bsh
M T T M TR S T LALEE (27)
9x 9dx ot d0x ot

A similar expansion for the truncation error may be obtained for Eq. (6b).

It is evident from an inspection of Eq. (27) that the truncation error
approaches zero as the time step At and distance step Ax approach zero, i.e.,
convergence is attained as the time and distance steps are refined. This
condition indicates that the four-point implicit difference equations are
consistent with the linearized model equations.

The effect which the type of four-point implicit scheme has on the trunca-
tion error is seen readily if Eq. (27) is expressed in the following form:

E = (26-1) O(At)+0(At2)+O(Ax2) (28)
where O indicates "order of." When 6 is unity, the truncation error is

E = 0(At)+0(At2)+0(Ax2) (29)

Thus, the backward implicit scheme is shown to have only first order
accuracy due to the At term. When 8 is 0.5, the truncation error is

E = 0(At2)+0(Ax?) (30)

The box implicit scheme is shown to have second order accuracy since both
At and Ax are quadratic. It is significant that only when 6 has a value of
0.5 is the truncation error of the higher, second order,degree of accuracy.
An inspection of Eg. (28) indicates that as 6 departs further from the value
of 0.5 the truncation error becomes larger. This is due to the increasing
contribution of the At term which has the leading coefficient (20-1).

3.3 Convergence Ratios

The conditions for convergence may be investigated quantitatively by
determining the convergence ratio U/u. The model equations are again used

14



since an analytical solution to such a linear system of partial differential
equations is possible.

The general solution of the linear system, Egs. (6), may be determined by
substituting the following complex Fourier components in Egs. (6):

i(ox+Bt
h = hrel! ) (31a)
v = v*el(°x+8t) (31b)
After differentiating, the following are obtained:
iBh*+ioHov* = 0 (32a)
iogh*+(iR+k)v* = 0 (32b)

Eliminating h* from Eqs. (32) and dividing by v* yields the following:

Bz—ikB-gHocz =0 (33)

Solving Eq. (33) for R, the following expression is obtained:

s
- [a - &= K
B =ol+ gH_ (Za) +1i 20] (34)

Using Eq. (34), expressions for the physical wave damping and wave
celerity (which shall be referred to as analytical damping and analytic
celerity) may be obtained as follows:

Analytical Damping = eI (Bt) = e'-kt/2 (35a)
Rre (Bt) k 2 '

1 1 = A ——— = - { —— 3sb

Analytical Celerity gH (20 ( )

The wave damping and celerity will now be determined for the four-point
implicit difference equations. Referring to Eq. (17a) and recalling Eq.
(12), the following expression is obtained:

1Bt | s (36)
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where r and s are defined in Egs. (17). After taking the logarithm of
both sides of Eq. (36) and dividing by i, the following is obtained:

BAt = %ln(r+is) (37)
however,

1n(r+is) = % 1n(r24s?)+i tan'l(f;) (38)
Therefore,

gat = tan - (45 In(r’s?) (39)

Using Eq. (39), expressions for the numerical wave damping and wave celerity
may be obtained as follows:

Numerical Damping = eIm(BAt) =~/&+(29-2)2a+(9-1)b (40a)
1+462a+6b
/ 2
. . _Re(BAt) _ 1 -1_#1léa-b’
Numerical Celerity = oht - okt tan [ 2+89(6-1)a+2(6-1)b] (40b)

where a and b are given by Egs. (16) and k is defined by Eq. (6c).

The convergence ratio is defined as the numerical solution divided by
the analytical solution. Convergence ratios for wave damping and wave
celerity are as follows:

\/&+(26-2)2a+(9-1)b
2
Numerical damping 1+46 a+6b (41a)
C., = - - =
d Analytical damping e-kAt/Z
2

. . VlGa—b

c = Numerical celerity _ tan 1[ 3180 (6-1)a+2 (5-1)b ]

¢  Analytical celerity (41b)

2
/ k
oAt gno-(Zo)

In order to facilitate the analysis of Egqs. (41l), it is advantageous to
nondimensionalize them. This can be accomplished by defining the following

dimensionless parameters: 16



L
= = 42
DL Ax _ (42a)

@)
[}

At
. K;,/gHo (42b)

D

= —te
£ kAt ovﬁﬂ; (42¢)

where D_ is the dimensionless measure of the spatial discretization of the
wave, D~ is the dimensionless Courant parameter, and D_ is a dimensionless
frictiofi parameter. Using these parameters, the following relations may be
obtained: 2

At 2 2
= gH_(3) tan”(0Ax/2) = (D_tan H/DL) (43a)
k

cAt,/gH (2—0') = = D\/l-(Df/-?) : (43d)

Substitution of Eqgs. (43) in Egs. (41) yields the following dimensionless
expressions of the convergence ratios for wave damping and wave celerity:

l+(26—2)2(Dctan w/DL)2+(B-1)Df

1+462(D tan */D )2+enf
c. = c L ~ (44a)

a

e/

J 2
16(D tan 1/D ) -D
]

c_ = tan”" 2+ee(e 1) (b tan /D) 24 (20- 19D, (44b)

%1 Dc*/l'(Df/z’

L
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From Egs. (44), it can be seen that C., and C are functions of 6, D_,
D , and D_. Accordingly, C. and C were compu%ed for the following range of
pirameter values: 6=0.5 and 1.0, 9sD_<1000, 1sD 100, and 0sD_s1.0. The
plotted results are presented in Figs.' 2, 3, L4, &nd 5.

In Fig. 2, the convergence ratios C, and C are plotted against D_ for
increasing values of the Courant parameter D°. These curves are associated
with a 6 value of 0.5 and a D_ value of zero? i.e., the convergence ratio
curves apply to the box four-point scheme for a condition of negligible
friction. In the upper graph, the convergence ratio C_, is unity for all
values of Dc and D., This indicates that the numerical wave and the
analytical wave daffiping have identically the same value, which in the case
of no friction,is zero. In the lower graph, the celerity convergence ratio
C  varies depending on the values of D and D.. In general, for a given D
Cg becomes less than unity as D incregses; however, the curves tend to
converge to unity as D_ increas€s. Thus, the numerical wave tends to lag
the analytical wave asLb increases,i.e., as the time step increases.

This trend is independeng of the value of Ax for a given wave length; but
as the wave length decreases, the error in the numerically computed wave
celerity increases in magnitude.

L

In Fig. 3, C, and C_ are plotted against D_ for increasing values of D .
These curves are assodiated with a 0 of 0.5 and a D_ of 0.4. Unlike Fig? 2,
Cd departs from unity. It can be seen that the numérical wave damping can
be greater than that of the analytical solution and that this trend is
related directly to D_ and indirectly to D_. The lower graph of Fig. 3 is
quite similar to that®in Fig. 2, indicating that the celerity convergence
ratio is not sensitive to the friction parameter Df.

Fig. 4 shows the graphs for C. and C for the box scheme when D_ has a
value of 1.0. The curves are similar €o those in Fig. 3 except for the
amplification of the C. curves. This indicates that C_ tends to depart
further from unity as B increases, i.e., the numerica? wave damping
becomes greater than the analytical damping as frictional effects become
more important. A comparison of the C curves in Figs. 2, 3, and 4 indicates
that the celerity convergence ratio isCaffected very little by friction.

In Fig. 5, the convergence ratios are presented for the backward implicit
four-point scheme where 6 is unity and D_ is zero. A comparison cf these
graphs with those in Fig. 2 illustrates ghe effect of the 6 value on the
convergence ratios. From Fig., 5, it is seen that in the fully implicit
scheme the damping convergence ratio becomes less than unity as Dc increases
and D. decreases, whereas in Fig. 2, the box scheme has a damping conver-
gence ratio of unity. Although not shown herein, the effect of friction on
the C, curves for the backward implicit scheme is similar to that for the
box sgheme, i.e., the error in the extent of damping increases as D_ increases.
As for the celerity convergence ratio, a comparison of Figs. 2 and
indicates the C_ departs somewhat further from unity for the backward
implicit scheme®than for the box scheme,
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3.4 Mass Conservation

A good indicator of the convergence of finite difference schemes for the
unsteady flow equations is the extent to which the scheme conserves mass
between the spatial boundaries of the system. If the finite difference
approximations given in Eqs. (4) are substituted in Eq. (la), wherein q is
assumed to be zero, the following difference equation for the conservation
of mass is obtained:

n+l n+l n n n+l n+l n n
- - - -(AV
m +Am+1 A Am+l + e[(AV)m+l (AV) ] + (l_e)[(AV)m+l ( )m} =0 (45)
2At Ax Ax

If all the terms along the x-axis from m=1 to m=M-1 (i.e., from the up-
stream to the downstream boundaries of the system) are summed, the following
equation is obtained:

m=M-1 (An+1+An+l) (A:+An )

Ax m m+l’ mbl . n+l_ n+l
D . 1 = oL@V —@En ]
m=1
n n
+(l-9)[(AV)l (AV)M] (46)
If 6=0.5, Eq. (46) becomes:
+
m=M-1 (An+l+An+1) (An+An ) (AV)n+(AV)n 1 (AV)n+(AV)n+1
bed pm_ml  Tmown 11, WOy
At &= 2 2 ! 2 2 !
which can be written in the following form:
change in Volume _ ;i 10w - outflow (48)

At

Thus, over one time step, the four-point box implicit scheme conserves the
mass within the spatial boundaries if the mass which enters or leaves the
system through the boundaries is taken into account.

If 6=1, Eq. (46) becomes:

m=M-1 (A3+1+An+l) (A;+An )

m+1l m+1 1

=1 :
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In Eg. (49), the right-hand term does not represent an average value
during the time step as it does in Eq. (47). Hence, the backward implicit
scheme is not as good a representation of the conservation of mass during an
interval of time as is the box scheme. This may be extended to apply to all
6 values which depart from a value of 0.5, and the extent to which the

scheme does not conserve mass is pProportional to the departure of 6 from a value
of 0.5.

3.5 Momentum Conservation

Substitution of Eqs. (4), with 6=0.5, in Eq. (1b), with g=0

» gives the
following difference equation for the conservat

ion of momentum:

. n+l n+l n n
+1. _ n+l n 2 2 2 2

Vg +Vm+1 Vz vin+l + }*Vﬁ+l Vﬁ m+tl m

2At 2 2Ax !

+ +
ntl n+l .n .n (sP st gt 45y
(h -h 4+ ~h ) f £ f
+q1 m+l m mtl m S + m mtl "m  “mtl = 0 (50)

2Ax o 4

Summing all the terms along the x-axis from m=1 to m=M~1 gives:

+
m=M-1 2n 1 n+l n n

(v -V ) (V. -vy )
1 +1 _n+l n 1.y 1 M1
7h¢ ngl (Vg Vil Vzvmﬂ)*?[ 2 hx T Z2x

1

n+l . n+l n . .n m=M-1
(h .  “-h ) «(h -h))
M 1 M1 g9 ntl _n+l n n _
My 2 ix So143 FZI (sfm *Sg  tSg 5, ) =0 (51

m+1 fm m+l

Thus, over one time step, the box scheme conserves the momentum within the
spatial boundaries if the momentum which enters or leaves the system
through the boundaries is taken into account. This is demonstrated by Eq.
(515 in that the finite difference expressions for the spatial derivatives
(d3v /9% and 5h/3x) do not contai& contributions from within the boundaries of
the system. If the term (1/2 ov /9x) were replaced with its equivalent
(v 9v/3x), the preceding analysis would show that contributions from within the
boundaries are contained within the finite difference expression of this

spatial derivative term. Thus, Eq. (1lb) is a preferred form of the momentum
equation for four-point finite difference solutions.
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3.6 Numerical Experiments

The rate of convergence of difference schemes may be investigated via
numerical experiments in which the solutions for various size time steps and
wave conditions are compared. The results of such a study of the implicit
four~-point schemes for the unsteady flow equations was reported by Fread
[1973a]. A summary of those numerical experiments follows:

If the finite difference operators defined by Eqs. (4) are substituted in
Egs. (1) wherein q is assumed negligible, the following implicit four~-point
difference equations are obtained:

n+ +
An+1+An+1_An_An (AV) l-(AV)n 1 (Av)n —(Av)n
m mtl m mt+l + 0] mtl 1+(1-0) [ m+l m] =0 (52a)
2At Ax Ax ’ a
LN+l n (V2n+l_v2“+l y Ll (g2t
m m+l m m+l +'e[ m+l m + gl m+l m s * fm fm+l )
20t [ 20% g Ax o 2
n n
2 2 n n n
(v _-v ) H ~H") (s +S )
m+l m m+l m £ f
+ - gf - = (52b)
(1-6) T + X so + m . m+l ] 0
where
-2
s =0 |vlv
f 4/3 (52C)

Egs. (52) form a system of two algebraic equations which are nonlinear with
respect to the unknowns, the values of H and V at the net points (m,n+l) and
(m+l,n+l). The terms A and S_ are known functions of H and/or V. The terms
associated with the net points (m,n) and m+l,n) are known from either the ini-
tial conditions or previous computations. The two equations cannot be solved
for the unknowns since there are two more unknowns than equations; however, by
considering all M number of points along the x-axis simultaneously, a solu-
tion may be obtained. In this way, a total of (2M-2) equations with 2M
unknowns may be formulated by applying Egs. (52) recursively to the (M-1)
rectangular grids along the x-axis. The boundary conditions at the upstream
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and downstream extremities of the channel reach provide two additional
equations which are necessary for the system of equations to be sufficiently
proposed to yield a solution. The resulting system of 2M nonlinear equations
with 2M unknowns must be solved by an iterative procedure. A functional
iterative process, called Newton-Raphson Iteration [Isaacson and Keller, 1966;
Amein and Fang, 1970], is used to solve the nonlinear system. The iterative
process may be improved by using parabolic extrapolation to obtain the first
approximation of the solution from solutions determined at previous times. The
coefficient matrix of the linearized system of equations has a banded struc-
ture which lends itself to very efficient solution algorithms, e.g., [Fread,
1970].

Truncation errors, related to the magnitude of the At time step, arise
during the integration of the implicit difference equations. The truncation
errors distort the computed transient via numerical dispersion and damping,
which in combination will be called "numerical distortion." Also, as will be
shown later, the characteristics of the discharge hydrograph at the upstream
extremity of the channel reach significantly affect the accuracy of the
solution.

The characteristics of the numerical distortion can be investigated via
numerical experiments in which Egs. (52) are applied to upstream boundary
transients described by the following four-parameter, Pearson Type III
distribution:

1 1
oty = 9_M1+(p-1) ) G v/ 7, (53a)
in which
Y = Tg/T (53C)

The terms in the above equations are defined as follows: Q(t) = discharge at
any time (t); Q = initial steady discharge as computed by the Manning

equation; Q € maximum discharge at the upstream boundary during the transient
flow conditTgﬁ; T = time of occurrence of Q : T = time associated with the
center of gravity of the upstream hydrograpﬂ?xp =ghydrograph amplification
coefficient; and Y = a skewness coefficient of the upstream hydrograph.

The downstream boundary condition is specified by the following implicit
stage-velocity relationship which is corrected for transient effects:
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2/3 1/2
_1.486 A
V= =2 @ s (54a)

in which P = the wetted perimeter of the channel cross section and,

s =g 3 _1av_1av ‘
f © 9x g 3t 2gox (54b)

This boundary condition allows the transient to pass the downstream extremity
of the channel reach without the occurrence of numerical reflection.

The primary objective of the numerical experiments presented herein is to
study the effect of relatively large time steps on the solution of the
implicit difference equations for transients having durations of the order of
days and even weeks. Accordingly, selected parameters describing the
physical characteristics of the channel reach are held constant except in
special instances where a single parameter is perturbed in order to determine
its effect on the results. The selected channel parameters are as follows:
channel reach length (L) = 100 miles; channel bottom slope (S ) = 1/5280 ft
per ft; Manning roughness coefficient (n) = 0.03; wide rectanqular cross-
section, hence the surface width (B) may be taken as unity; L/Ax=10; and
initial depth of flow (Yo) =5 ft. Convergence criteria for H and V in the
iterative solution were chosen as: ]Hk +1-Hk ] 2 lxlO_6 and [Vk +1-Vk Islxlo-e,
where the superscript k” denotes the number of iterations.

The effect of the magnitude of the time step on the accuracy of the computed
solutions is determined by systematically increasing the time step from
At , a relatively small value in the order of minutes, to a relatively large
vaTue of 12 hrs. The At_ time step is the maximum size time step that can
be used in the explicit %inite difference method; it is computed from the
Courant stability condition, Eq. (2). The stage hydrographs obtained using
At  in Egs. (52) are considered the standards to which the solutions computed
wikh At time steps of 1, 3, 6, and 12 hrs are compared.

Deviations from the standard hydrographs are measured by the following
relative root mean square error (Se) and relative error of the peak (Pe) of

the hydrographs:
j=n* 5 172

1000 3 (y;7ys )]

s = J=1 (55)
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P, = 100(1-yp/ysp) (56)

in which n” = total number of hydrograph values being compared, Yy = stage
value computed with a particular At time step, ys: = stage value computed
with a At time step, y = maximum (peak) value o Yj, and ys = maximum
value of ?sj. P p

Figs. 6 and T illustrate typical numerical distortions of the computed
hydrographs at the downstream boundary for two variations in the upstream
boundary condition. In Fig. 6, the time of rise (1) is 48 hrs, while in
Fig. 7, T is 120 hrs. The hydrographs obtained with a time step of 12 hrs -
differ from those computed with a time step of 0.5 hr. The rising limb of
the former occurs earlier than the latter, while the falling limb is delayed
and the peak is attenuated. The distortion is more proncunced in Fig. 6
than in Fig. 7 for the same values of At and 6. Also, for a single T
value, the distortion is significantly greater for 6=1.0 than for 6=0.55.

A quantitative evaluation of the numerical distortion, in terms of S and
Pe' is shown in Fig. 8. The influence of 6 and T on the degree of disfortion
iS§ significant. This was also observed for other test hydrographs. Thus, it
may be concluded that the lower range of allowable 6 values minimizes the
distortion (dispersion and attenuation) which results from the use of large
time steps in the integration of the implicit difference equations. Also,
the degree of distortion becomes less as the time of rise of the input
hydrograph increases. Several correlations of S with the size of the At
time step are shown in Fig. 9. The correlations®are given for various Tt
and p values of the upstream boundary hydrograph. The S error is associated
with the stage hydrographs computed at the downstream bo%ndary of the 100-mile
channel reach described previously. ‘

An examination of Fig. 9 yields the following information concerning the
numerical distortion resulting from the use of At time steps considerably
larger than those determined from the Courant condition, Eq. (2).

1) The magnitude of Se increases with the size of the At time step;

2) as T, the time of rise of the upstream hydrograph increases, the
slopes of the (Se,At) curves decrease;

3) the magnitude of Se is less than 1% for T > 96 hrs and At < 12 hrs.

The solid curves in Fig. 9 are applicable for a 6 of 0.55, a value chosen
so as to minimize the numerical distortion while conservatively insuring the
absence of a computational mode (weak stability) in the computations.

The dashedportions of the curves are applicable to 6 values greater than 0.55
which are required for numerical stability since lesser values of 8 cause
instabilities to arise in the iterative solution of the nonlinear difference
equations. The selected 8 values are optimal in that the magnitude of
numerical distortion is minimized while numerical stability is achieved.

The optimal 6 values vary with At and t. From an inspection of Fig. 9, it
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can be seen that the tendency for stable numerical computations decreases
with increasing values of At and with decreasing values of 6 and T.

The effect of the At time step size on the attenuation of the computed stage
hydrographs at the downstream boundary is presented in Fig. 10 for various
combinations for t and p. 1In Fig. 10, Pe is negligible for T values greater
than 48 hrs; however, Pe can be significant for At » 3 hr when T € 48 hrs.

The results presented thus far are applicable for the constant channel
parameters selected previously. In order to determine if the numerical
distortion resulting from large time steps is sensitive to the values of the
channel parameters, these are perturbed and the resulting effects on S and
Pe are observed. The observed effects may be summarized by the followfng
approximation:

e -~ o . 57
(se , pe) n (se,Pe) (57)

in which the prime superscript denotes the magnitude of S or P associated
with any channel parameter (y”) having a different value ghan the constant
value of the corresponding parameter (y) for which Figs. 9 and 10 are
applicable. The correction factor n is pPresented in Fig. 11 for the
various channel parameters in terms of the ratio, y°/Y. It can be observed
from Fig. 11 that the numerical distortion increases when either the channel
length, £, or the Manning roughness factor, fi, increase; and decreases when
either the magnitude of the initial depth of flow, Y , or the channel bottom
slope, S , increase. The magnitude of the numerical distortion increases
with theodistance from the upstream boundary to the channel location in
question.
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4. SUMMARY AND CONCLUSIONS

4.1 Summary

The numerical properties of implicit four-point difference schemes for the
differential equations of unsteady flow have been analyzed. A summary of the
results of the analytical analysis follows:

1

2

10
11

A generalized expression, Eq. (18), for the stability factor |A|

was developed using the von Neumann technique.

When the finite difference weighting factor, 6, is within the
interval 0.5<08<1.0, the implicit four-point scheme is unconditionally
linearly stable. When frictional effects are negligible, the box
scheme, in which 6=0.5, is neutrally or weakly stable; and, the
backward implicit scheme, in which 6=1.0, is unconditionally linearly
stable independent of the computational time and distance steps.

The truncation error, Eq. (27), of the implicit four-point scheme
demonstrates the consistency of the scheme, since the truncation
error approaches zero as the time and distance steps are refined.

The truncation error indicates that the box scheme has second order
accuracy; the accuracy decreases to the first order accuracy of

the backward implicit scheme as 6 increases from 0.5 to unity.
Generalized convergence ratios for wave damping (Cg4) and wave
celerity (C ) were developed; these are given by Egs. (44) in

terms of th& following dimensionless parameters: (a) D_, which is
the ratio of the wave length to the computational distance step;

(b) D , which is the Courant parameter given by Eg. (42b); (c)

D_, which is a dimensionless friction parameter given by Eq. (42c).
Graphs of the convergence ratios plotted as functions of D_, D , and
D_ are presented in Figs. 2, 3, 4, and 5. L

AS D increases, the convergence ratlos tend to depart from a value
of uﬁity, i.e., the truncation error, which represents the departure
of the difference solution from the true solution of the differential
equation, increases as the Courant parameter increases. This trend
may also be described for a given wave length by the following - the
truncation error increases as the computational time step increases.
As D_ increases, the convergence ratios tend to approach a value of
unity, i.e., for a given wave length, the truncation error decreases
as the computational distance step decreases.

The convergence ratios tend to depart more from a value of unity as
the friction parameter D_ increases, i.e., the truncation error
increases as the frictional effects increase.

The convergence properties of the box scheme are superior to those of
the backward implicit scheme, particularly with respect to wave
damping.

The box scheme conserves mass during one time step.

The box scheme conserves momentum during one time step if the equation
of dynamic equilibrium is expressed in the form of Eq. (1lb).

From the numerical simulation experiments, the following results are
summarized:
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Numerical distortion, in the form of dispersion and damping of the
computed transient, increases as the size of the At time step
increases;

Numerical distortion of the computed transient increases as the 6
weighting factor in the implicit difference equations approaches
unity;

Numerical distortion, measured by S and P , is of the order of one
percent or less for At<12 hrs when %he trafisients at the upstream
boundary have a time of rise (7_greater than approximately 72. hrs;
this is applicable for 6=0.55, L=100 miles, and 1=0.03, and
increases as 6, L, and/or B increase;

When 1>96 hrs, the magnitude of the numerical distortion is
approximately proportional to certain computational, upstream
boundary, and channel parameters as follows:

-1 -=- -1 -1
[Se,Pe]xAt,e,T ,p,n,L,Yo ,S0

The implicit difference equations are more stable for large At

time steps and relatively rapid transients (24571<48 hrs) as 6
approaches unity; however, the truncation error becomes quite large
for At much greater than approximately 1 or 2 hrs.

4.2 Conclusions

From the results of the analytical and numerical simulation analyses of the
numerical properties of the implicit four-point difference equations of
unsteady flow, the following conclusions are presented:

1

The numerical experiments tend to corroborate the results obtained
via the analytical analysis of the linearized model equations of
unsteady flow both as to the stability and convergence properties

of the four-point implicit difference equations;

The implicit four-point schemes with 0.55651.0 are unconditionally
linearly stable; this is expected to always apply for long waves

if the computational time and distance steps are selected to achieve
a reasonable degree of convergence according to the criteria pre-
sented in Figs. 2-5;
As 6 departs from 0.5 and approaches 1.0, the accuracy of the
implicit four-point schemes becomes less; therefore, the box scheme
(6=0.5) is preferred over the backward implicit scheme (6=1.0),
since the former has superior convergence properties;
For the particular case of long duration smoothly varying transients
of approximately eight days or greater, time steps in the range of
12 hrs (D =25) may be used in the box scheme with negligible loss
of accuragy; and ;
The computational mode or pseudo-instability which is sometimes asso-
ciated with the box scheme may be eliminated by increasing 6 to a
value of about 0.55.
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